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The process of the fracture of metals with creep as a function of the temperature of the 
stress takes place in a dual manner. Large stresses and a low temperature led to intergrain 
cracking with considerable irreversible deformations (viscous fracture). With small stres- 
ses and a high temperature, there is mainly the breaking of intergrain bonds with a small val- 
ue of the irreversible deformation (brittle fracture). On a diagram of the long-term 
strength in the coordinates log Oo -- log tRp they are illustrated by two straight lines with 
different slopes. 

Brittle fracture takes place by the generation of pores along the grain boundary, orthog- 
onal to the direction of the maximal elongational stress, which, growing during the process 
of creep, coalescence, and form a macrocrack, leading to fracture of the body [i]. 

In [2], with a description of brittle fracture, the parameter ~ was introduced, i.e., 
the damage to the material, obeying the equation 

~ = A(~max~m (0.i) 
Ot \ i  - -  ~/ 

(A, m are constants of the material). For smooth samples, where the process of the genera- 
tion and coalescence of ~he pores is uniformly distributed over the whole volume of the bodyp 

depends only on the time. In this case, Eq. (0,i) is easily integrated and gives a connec- 
tion between the elongational stress Oo and the time up to fracture tR: 

t R = [A: (m: '+  t) a~] -1. (0 .2)  

The p r e s e n c e  o f  s t r e s s  c o n c e n t r a t o r s  i n  t h e  body  l e a d s  to  i n h o m o g e n e i t y  o f  t h e  f i e l d  o f  t h e  
s t r e s s e s  and to  l o c a l i z a t i o n  o f  t h e  f r a c t u r e  s i t e .  S i m i l a r  p r o b l e m s  h a v e  r e c e n t l y  a t t r a c t e d  
more  and more  a t t e n t i o n  [ 3 - 5 ] .  A l a r g e  number  o f  e x p e r i m e n t s  h a v e  b e e n  made on i n v e s t i g a -  
t i o n  o f  t h e  p r o p a g a t i o n  o f  c r a c k s  f rom s h a r p  n o t c h e s  i n  t h i n  p l a t e s ,  and on t h e  d i s c o v e r y  
o f  t h e  p a r a m e t e r s  c o n t r o l l i n g  t h e  p r o c e s s  o f  t h e  d e v e l o p m e n t  o f  c r a c k s  ( s e e  t h e  r e v i e w  [ 6 ] ) ,  

The p r e s e n t  a r t i c l e  i s  d e v o t e d  to  a t h e o r e t i c a l  s o l u t i o n  o f  t h e  p r o b l e m  o f  t h e  p r o p a g a -  
t i o n  of a crack in a thin plate under conditions of brittle fracture with creep. 

i. We consider a thin plate with an initial straight crack with a length 21o, which is 
elongated by the stress Oo, applied at infinity orthogonal to the direction of the crack, 
We assume that the plate is in a state of creep, and that the applied stress Go is less than 
the critical stress o, = Kc/~ in the analogous Griffiths problem. Near the tip of the 
crack there is a narrow plastic zone, whose greatest dimension is d, and the maximal elonga- 
tional stress is equal to the yield point for the stress ~s" We denote by l(t) the position 
of the tip of the crack; ~y(t, Xo) and ~(t, Xo) are the maximal elongational stress and the 
damage at the point Xo of ~he x axis at the moment of time t > 0 (the x axis is directed 
along the crack; the y axis is orthogonal to it). Integrating Eq. (0.i), we obtain a rela- 
tionship connecting the damage and the stress at the point Xo: 

t 

/ t  x ~m+z A(mq-i)~('r, xo)d'n l - - ( i - - o ~ t  ~ oH = 
0 

(i.i) 

The criterion of fracture is the condition ~(t, l(t) + d) = i, i.e-, the damage at the end 
of the plastic zone of the crack, which, at the moment of time t, had a length 21(t) equal 
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to unity. We introduce the dimensionless quantities T = t/tR, A = I/lo, p = d/Zo, ~ = o_/Oo, 
~ = am/uo. Taking account of the fracture criterion and of the relationship (0.2), fro~ 
(i.i) there follows an integral equation for the dependence of the length of the crack % on 
the time z 

~. " SO~(T,,~,(T) + p)d~',. ( 1 .2 )  
0 

_m 
From Eq. (1.2) the elongation time of the crack T, = O, is %mmediately determined. This is 
the time, during the course of which, at the end of the plastic zone of the initial immobile 
crack a damage accumulates equal to unity, and the crack starts to propagate. We rewrite 
(1.2) in the form 

"(w, 

- J" (T) + p) = ( , "  + p) 
0 'Iw, 

(1.3) 

With 0 ~ T < r,, the crack is motionless, and the stresses change with the course of time 
only due to the process of creep. With T > T,, the crack starts to propagate and the depen- 
dence ofthe stresses on the time is now determined not only by the creep, but by the non- 
steady-state character of the problem. An exact solution of Eq. (1.3) is complicated, and is 
impossible without the Use of numerical methods (a similar problem with a different criterion 
of fracturewas solved in [7] using the method of finite elements), However, the limiting 
states can be separated, and an approximate solution can be found to Eq. (1.3), Since the 
process of the accumulation of damage due to a strong concentration of stresses is localized 
near the tip of the crack, then, in the expression for the stresses , Eq. (1.3), only a single 
term can remain. We distinguish two classes of materials: "brittle" or "rigid," which are 
characterized by a high yield point and a small creep index and a power law of the creep, 
and "viscous" or "soft," for which the yield point is not great, and the creep index is ra- 
ther large. For the first class of materials, ~, is small; therefore, redistribution of 
the stresses due to creep can be neglected with 0 s T s T,, and it can be assumed that, in 
this interval of time, the stresses coincide with the initial elastic stresses. We postulate 
also that, also with T > T,, the stresses vary according to an elastic law (this is true at 
least in the initial moment of the propagation of the crack). Consequentlyp for this class, 
ay =K/2/~r, where r = x -- I is the distance from the tip of the crack; K = uo/~is the 
cbefficient of the intensity of the stresses. For the second class of materials, the redis- 
tribution of the stresses with 0 sT s T, also cannot be neglected. After this time, in the 
plate let there be complete redistribution of the stresses from the initial elastic state 
to the state of fully established creep. In the case of a power law of the creep ~i~ = (3/ 
2)B~n-~sij, where B, n are constants of the material; ~ = (3/2s..s..)*/2 is the inE~nsity 

�9 13 13 
of the stresses; s!j , ~ij are the components of the deviator of the tensor of the stresses 

= k ao(Z/r) *~(n+1) [8], where k and the deformation rates; for the elongational stress ~y n n 

is a known function of the creep index n (kl = i//2). We assume that, with 0 s T S TO, the 
stresses are determined from the state of fully established creep. Then, as for the other 
class of materials, we can write 

' ~ .  = k . % ( U O  ~/(~+'), (i. 4) 

where n = 1 for "rigid" materials, and n > i for "soft" materials, 

2. Taking account of expression (1.3), we rewrite expression (1,4) in the form 

~. - -  "[$k~ a (1/(~, ( l )  + p - -  t)) 'ra/(n'}'l) = kn~ S (~ (T0/(~' (~) + P - -  ~ (~0)) "/('~+1) dTl" 
T~ 

(2.1) 

We make the replacement of variables A(T) = z, A(TI) = ~, T, =9(~), dT~ = ~'(~)d~ and de- 
note m/(n + i) = ~ in the new variables, Eq. (2.1) will be 
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z 

I - -  z , k ~  (z + p - -  | ) ' =  = k~ S (~/(z -4- P - -  ~))a r  (~) d~. ( 2 . 2 )  
1 

Equation (2.2) is a Volterra equation of the first kind with a difference kernel with respect 
t o  t h e  f u n c t i o n  g u ~ , ( ~ ) .  The s o l u t i o n  o f  t h i s  e q u a t i o n  can  be  found  u s i n g  t h e  L a p l a c e  t r a n s -  

fo rm ](p)=Sl(t)e-ptdt (bringing Eq. (2.2) into standard form with a lower limit equal to 
0 

z e r o )  For  t h e  t r a n s f o r m e d  q u a n t i t i e s ,  Eq. ( 2 . 2 )  i s  w r i t t e n  i n  t h e  fo rm 

.m - = ~  - -  ( 2 . 3 )  t q=-~eqr (1 - -  a,  q) = ~np (p) qa-leqr (l ~,  q),; 
q 

o o  

where  r ( t - - ~ , q ) =  ~ e - t t - ~ d t  i s  an i n c o m p l e t e  gamma~func t ion ;  ~ ( p )  i s  a L a p l a c e  t r a n s f o r m  of  t h e  
q 

= k -m ~ (which follows function ~'(~); q = pp; it is also taken into consideration that r, n P 
from Eq. (2.2) with z = l), From Eq. (2.3) we find 

( p )  = k ; m p  = ( q - = e - q / r  ( I  - -  ~ ,  q ) .  l ) .  ( 2 . 4 )  

Since the solution constructed is valid only with values of ~ close to ~, (i.e. t z § i, and, 
consequently, q § =), then, expression (2.4) can be replaced by an asymptotic expression; 
replacing F(I -- u, q) by its asymptotic expansion with large values of q [9], 

r ( l  - a ,  q) = q - % - q ( l  - a/q + (~(= + l)/q ~ -  . .). 

The final solution in transforms assumes the form 

(p) = kT~p = ((i - -  o:/q + = (= + l ) / q  ~ - - .  . . ) -~ - -  l) ~ k - f ~ p = - ~ z l p .  

The inverse of this transform will be za~a ' (z) = kn-mpa-za. Returning to the old variables 
= z and r = ~(z), for the rate of propagation of the crack dX/dr we obtain the following 

dependence: 

d~d~ kn .-~ , 

or, in dimensional quantities (taking account of (2.2)) 

e_z = k'~ A (m + t) d~-=~ol=. ( 2 . 5 )  
dt cz 

For "rigid TM materials, n = I t k~ = i//~; consequently, (2.5) is written in the form 

dj = A (m + l) (2~d)l_m/~ K~" 
dt ~m 

A power dependence of the rate of propagation of a crack dl/dt on the coefficient of the in- 
tensity of the stresses K has been observed in a number of experiments [i0, ll] (see t also 
the review [6]) for Cr-Mo--V steel. 

In [12], for a description of the process of the propagation of a crack with creep, use 
8ij 

was made of a modified Rice-Cherepanov J-integral C* =~IYdy--Ti~dsl, ~s [ ~ijds~3 , carried 

0 

over to the case of fully established creep. For the power law of the creep, in accordance 
with [8], the expression of the components of the stress tensor in terms of C* has the form 

(Y~---- (B__~l/(n+l) ~ij (0),: ( 2 , 6 )  

where B, n are constants of the material in the power law; ~ij (0) are bounded functions of 

t h e  p o l a r  a n g l e  0; I i s  a c o n s t a n t  d e p e n d i n g  on t h e  i n d e x  o f  t h e  c r e e p  n .  Tak ing  a c c o u n t  
n 

of (2.6) and (1.4), relationship (2.5) for a "soft" material is written in the form 
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~ =  A (m -[- t) ~ + t d ~ .+ ,  (BIn)  "+t C *-4-4i. 
m 

Consequently, for "soft" materials, a power dependence of d~/dt on C* is obtained, which has 
been observed experimentally in [12] for nickel alloys. Thus, the following conclusions can 
be drawn: the kinetic equation for the parameter of the damage ~ can be used also to describe 
the process of brittle fracture with the creep of samples with notches; here, the rate of 
propagation of cracks for "rigid" materials is determined by the coefficient of the intensity 
of the stresses, and, for "soft" materials, by the value of the modified J-integral. 
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